Calpain-generated natural protein fragments as short-lived substrates of the N-end rule pathway.
نویسندگان
چکیده
Calpains are Ca(2+)-dependent intracellular proteases. We show here that calpain-generated natural C-terminal fragments of proteins that include G protein-coupled receptors, transmembrane ion channels, transcriptional regulators, apoptosis controllers, kinases, and phosphatases (Phe-GluN2a, Lys-Ica512, Arg-Ankrd2, Tyr-Grm1, Arg-Atp2b2, Glu-Bak, Arg-Igfbp2, Glu-IκBα, and Arg-c-Fos), are short-lived substrates of the Arg/N-end rule pathway, which targets destabilizing N-terminal residues. We also found that the identity of a fragment's N-terminal residue can change during evolution, but the residue's destabilizing activity is virtually always retained, suggesting selection pressures that favor a short half-life of the calpain-generated fragment. It is also shown that a self-cleavage of a calpain can result in an N-end rule substrate. Thus, the autoprocessing of calpains can control them by making active calpains short-lived. These and related results indicate that the Arg/N-end rule pathway mediates the remodeling of oligomeric complexes by eliminating protein fragments that are produced in these complexes through cleavages by calpains or other nonprocessive proteases. We suggest that this capability of the Arg/N-end rule pathway underlies a multitude of its previously known but mechanistically unclear functions.
منابع مشابه
Neurodegeneration-associated protein fragments as short-lived substrates of the N-end rule pathway.
Protein aggregates are a common feature of neurodegenerative syndromes. Specific protein fragments were found to be aggregated in disorders including Alzheimer's disease, amyotrophic lateral sclerosis, and Parkinson's disease. Here, we show that the natural C-terminal fragments of Tau, TDP43, and α-synuclein are short-lived substrates of the Arg/N-end rule pathway, a processive proteolytic syst...
متن کاملThe N-end rule pathway counteracts cell death by destroying proapoptotic protein fragments.
In the course of apoptosis, activated caspases cleave ∼500 to ∼1,000 different proteins in a mammalian cell. The dynamics of apoptosis involve a number of previously identified, caspase-generated proapoptotic protein fragments, defined as those that increase the probability of apoptosis. In contrast to activated caspases, which can be counteracted by inhibitor of apoptosis proteins, there is li...
متن کاملThe N-end rule pathway controls the import of peptides through degradation of a transcriptional repressor.
Ubiquitin-dependent proteolytic systems underlie many processes, including the cell cycle, cell differentiation and responses to stress. One such system is the N-end rule pathway, which targets proteins bearing destabilizing N-terminal residues. Here we report that Ubr1p, the main recognition component of this pathway, regulates peptide import in the yeast Saccharomyces cerevisiae through degra...
متن کاملStarting with a degron: N-terminal formyl-methionine of nascent bacterial proteins contributes to their proteolytic control
Generally, the synthesis of proteins in bacteria as well as in eukaryotic mitochondria and chloroplasts starts with formyl-methionine (fMet). The formyl group of Met is subsequently removed by ribosome-associated peptide deformylase (PDF) during translational elongation. The function of the transient formylation of the initiator Met residue, beyond enhancing the interaction with translation ini...
متن کاملAltered activity, social behavior, and spatial memory in mice lacking the NTAN1p amidase and the asparagine branch of the N-end rule pathway.
The N-end rule relates the in vivo half-life of a protein to the identity of its N-terminal residue. N-terminal asparagine and glutamine are tertiary destabilizing residues, in that they are enzymatically deamidated to yield secondary destabilizing residues aspartate and glutamate, which are conjugated to arginine, a primary destabilizing residue. N-terminal arginine of a substrate protein is b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 111 9 شماره
صفحات -
تاریخ انتشار 2014